Transition Metal Chemistry

Transition metal chemistry (Coord. Complexes) Pages 266 - 274 Pre-lab: Page 271 Post-Lab: Page 274

Objectives

- Synthesis of a coordination complex
- Typical reactions of some transition metal complexes

Transition Elements

- Have an incomplete d shell of electrons
- Have a large coordination sphere
- Can have many oxidation states (lots of redox chemistry)
- Form paramagnetic complexes
- Often form colored complexes, in contrast to p-block complexes that are usually colorless.

What is a transition metal complex?

• It is defined as a metal ion bonded (coordinated) to one or more neutral or anionic molecules.

• Shown by using square brackets around the formula: $[Ag(NH_3)_2]^+$

Ligands?

- Metals form cations, the molecules that are attached to them can be neutral or anionic.
- These are called ligands.
- Ligands are Lewis bases, they donate electrons to the metal center.
- Examples of ligands include: H₂O, Cl⁻, NH₃, C≡N⁻, C₆H₅⁻

Coordination Sphere

- The number of ligands that are coordinated to the metal center is defined as the coordination sphere
- Transition metals usually have high coordination numbers because of their size and their empty d orbitals that can accommodate lots of ligands

Examples

- $[Cu(H_2O)_6]^{2+}$ C.N = 6
- FeCl_2 C.N. = 2
- $[FeCl_2(H_2O)_4] C.N. = 6$
- $K_2 [Fe(CN)_6]^{2+}$ C.N. = 6
- A coordination number of 6, usually implies octahedral geometry
- A coordination number of 4 is either square planar or tetrahedral geometry

Ligand Types

- Monodentate: one binding site: Cl⁻, Br⁻, H₂O
- Bidentate: two binding sites
- Tridentate: Three binding sites
- Anything greater than monodentate is called a chelating ligand (Greek for claw)

 $H_2NCH_2CH_2NHCH_2CH_2NH_2$ tri

triethyelenediamine

Transition Metal d orbitals

As the excited electron (in the top orbitals), falls back down so light is emitted.

This is why we see colors in transition metal complexes

Ligand Types

- Different ligands have different effects on the energies of the d orbitals of the central ion.
- Some ligands have strong electrical fields which cause a large energy gap when the d orbitals split into two groups. Others have much weaker fields producing much smaller gaps.

- Remember that the size of the gap determines what wavelength of light is going to get absorbed.
- The list shows some common ligands. Those at the top produce the smallest splitting; those at the bottom the largest splitting.

Ligand Splitting

How does splitting affect color?

• The ligands that cause a big splitting usually give the more intensely colored complexes.

• Smaller splitting ligands (halides) are usually less strongly colored

Stability (Reactivity) of ligands and complexes

• The stability of a complex will be determined by introducing an anion that if combined with the metal cation will form a precipitate.

For example:

- NiCl₂ in solution, dissolves and we have Ni²⁺ and 2Cl⁻ as ions.
- If OH⁻ is introduced (as NaOH) then the Ni²⁺ can bond with either the Cl⁻ or the OH⁻.
- Ni(OH)₂ is insoluble, if this forms, a precipitate will be observed and we can postulate that the Ni²⁺ has preference for the OH⁻ over the Cl⁻

Ligand Displacement $[ML_x] + L' \rightarrow [ML'_x] + L$

For example: $[Cu(H_2O)_4]SO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]SO_4$

- The NH_3 is said to 'displace' the H_2O from the metal.
- This means that the NH_3 is a more reactive ligand and that the metal- NH_3 bond is stronger than the H_2O bond

Procedure

- A variety of oxalate coordination complexes are to be prepared.
- YOU choose which one you would like to prepare: Cr, Cu, Fe or Al.
- Try and do a different metal from your neighbor so you can compare the different properties.

Naming your product

- Example: K₄[Fe(CN)₆] is potassium hexacyano ferrate
- The cation outside the square bracket is named first
- The hexa cyano is because there are six CN-ligands.

Ligand Names

- The ending changes when the ligand is *inside* the square bracket
- $CN^- = cyano$
- $NH_3 = ammine$
- $H_2O = aqua$
- $C_2O_4^2$ = oxalato

Naming complexes

 \cdot H₂O indicates a hydrated complex.

 $\cdot 3H_2O = tri hydrate$

Isolate your product

• Collect the dried crystalline product.

• Record the weight, and calculate your theoretical and percent yield.